Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D). I B.Sc MATHEMATICS.

SEMESTER-I PAPER I: DIFFEENTIAL EQUATIONS

QUESTION BANK

Unit-I: FIRST ORDER AND FIRST DEGREE DIFFERENTIAL EQUATIONS

4Marks:

1. Solve
$$(1+x^2)\frac{dy}{dx} + 2xy = 4x^2$$

2. Solve
$$\frac{dy}{dx} + 2xy = e^{-x^2}$$
.

3. Solve
$$x \frac{dy}{dx} + 2y = x^2 \log x$$
.

4. Solve
$$xy dx - (x^2 + 2y^2)dy = 0$$

5. Solve
$$\frac{dy}{dx} + (2x \tan^{-1} y - x^3)(1 + y^2) = 0$$
.

6. Solve
$$(1+e^{\frac{x}{y}}) dx + (1-\frac{x}{y}) e^{\frac{x}{y}} dy = 0$$
.

7 . Solve
$$(y^4+2y) dx+(xy^3+2y^4-4x) dy=0$$
.

8 Marks:

8. Solve
$$x \frac{dy}{dx} + y = y^2 \log x$$
.

9. Solve
$$x(x-1)\frac{dy}{dx} - y = x^2(x-1)^2$$
.

10. Solve
$$\frac{dy}{dx}(x^2y^3+xy)=1$$
.

11. Solve
$$x^2y dx - (x^3+y^3) dy=0$$
.

12. Solve
$$y(1+xy) dx + x(1-xy) dy = 0$$
.

13. Solve
$$2xy dy-(x^2+y^2+1) dx=0$$
.

Unit-II: ORTHOGONAL TRAJECTORIES

- 1. Find the orthogonal trajectories of the family of hypocycloids $x^{\frac{2}{3}} + y^{\frac{2}{3}} = a^{\frac{2}{3}}$ where 'a 'is a parameter.
- 2. Find the orthogonal trajectories of the family of curves $r = a\theta$, where 'a 'is a parameter.

3. Solve
$$x^2 \left(\frac{dy}{dx}\right)^2 + xy \frac{dy}{dx} - 6y^2 = 0$$
.

4. Solve
$$p^2x^2 = y^2$$
.

5. Solve
$$y = 2px - p^2$$
.

6. Solve (y-xp)(p-1)=p by using clairauts form.

8 Marks:

- 7. Show that the family of confocal conics $\frac{x^2}{a^2+\lambda} + \frac{y^2}{b^2+\lambda} = 1$ is self orthogonal ,where λ is parameter .
- 8. Show that the system of confocal and coaxial parabolas $y^2 = 4a(x + a)$ is self orthogonal where a is a parameter.
- 9. Find the orthogonal trajectory equations of $r = \frac{2a}{1 + \cos\theta}$, where a is a parameter.

10. Solve
$$p^2 + 2py\cos x = y^2$$
.

11. Solve
$$y = 2px + x^2p^4$$
.

12. Solve
$$y^2 \log y = xyp + p^2$$
.

Unit-III: HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS 4Marks:

1. Solve
$$(D^2 + 4D + 3)y = e^{2x}$$
.

2. Solve
$$(D^3 - 5D^2 + 8D - 4)y = e^{2x}$$
.

3. Solve
$$(D^2 - 5D + 6)y = e^x$$
.

4. Solve
$$(D^2 - 1)y = \cos x$$
.

5. Solve
$$(D^2 + 3D + 2)y = e^{-2x} + \sin x$$
.

6. Solve
$$(D^2 - 3D + 2)y = coshx$$
.

7. Solve
$$(D^3 - 5D^2 + 7D - 3)y = e^{2x} coshx$$
.

8. Solve
$$(D^3 + 1)y = 3 + 5e^{2x}$$
.

9. Solve
$$(D^2 - 4D + 3)y = \sin 3x \cos 2x$$
.

10. Solve
$$(D^2 - 3D + 2)y = \cos 3x \cos 2x$$
.

11. Solve
$$(D^2 + 4)y = e^x + \sin 2x + \cos 2x$$
.

Unit-IV: HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS 4 Marks:

- 1. Solve $(D^2 + D + 1)y = x^3$.
- 2. Solve $(D^2 4D + 4)y = xe^{2x}$.
- 3. Solve $(D^2 6D + 13)y = 8e^{3x}sin2x$.
- 4. Solve $(D^2 7D + 6)y = e^{2x}(1 + x)$.
- 5. Solve $(D^3 + 2D^2 + D)y = x^2 + x$.
- 6. Solve $(D^2 1)y = x \sin x$.

10 Marks:

- 7. Solve $(D^2 + 3D + 2)y = e^{-x} + x^2 + \cos x$
- 8. Solve $(D^2 2D + 4)y = 8(x^2 + e^{2x} + \sin 2x)$.
- 9. Solve $(D^2 4D + 4)y = 8x^2e^{2x}\sin 2x$.
- 10. Solve $(D^2 + 4)y = x \sin x$.
- 11. Solve $(D^2 + 2D + 1)y = x\cos x$.
- 12. Solve $(D^2 + 1)y = x^2 \sin 2x$.

Unit-V : HIGHER ORDER LINEAR DIFFERENTIAL EQUATIONS 4 Marks :

- 1. Solve $(x^2 D^2 2xD 4)y = x^2$.
- 2. Solve $(x^2 D^2 + xD 4)y = x^2$.
- 3. Solve $(x^2 D^2 xD + 1)y = log x$.

- 4. Solve $(D^2 + 1)y = cosecx$ by the method of variation of parameters.
- 5. Solve $(D^2 + a^2)y = \tan ax$ by the method of variation of parameters.
- 6. Solve $(D^2 + 4)y = 4 \sec^2 2x$ by the method of variation of parameters.
- 7. Solve $(x^2 D^2 xD + 2)y = x \log x$.
- 8. Solve $(x^2 D^2 xD + 4)y = \cos(\log x) + x \sin(\log x)$.
- 9. Solve $(x^2 D^2 + 2xD 20)y = (x + 1)^2$.

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D).

II B.Sc MATHEMATICS. SEMESTER-III PAPER III: GROUP THEORY IMPORTANT QUESTIONS

GROUPS

4Marks:

- 1. In a group G show that $(a b)^{-1} = b^{-1} a^{-1}$ for all a, b \in G
- Prove that every group has unique identity.
- 3. Prove that In a group G each element has unique inverse.
- 4. Show that a group G is abelian iff $(a b)^2 = a^2 b^2$ for all $a, b \in G$
- 5. If G is a group such that $a^{-1} = a$ for all $a \in G$ then prove that G is abelian.
- 6. Show that the set of 4^{th} roots of unity $G = \{1, -1, i, -i\}$ form a groupwrt multiplication.

8 Marks:

- If G is a Group and a ,b ∈ G then prove that a x = b and y a=b haveunique solutions.
- 8. Show that $G = \{a + b\sqrt{2} / a, b \in Q\}$ is a group with respect to multiplication.
- 9. Show that $G = \{\begin{pmatrix} \cos a & -\sin a \\ \sin a & \cos a \end{pmatrix} / \alpha \in Z \}$ is a group w r t multiplication of matrices.
- 10. Show that the set of Positive Rational numbers Q^+ is an abelian group w. r.t an operation * defined by $a*b = \frac{ab}{3}$ for all $a,b \in Q^+$.
- 11. Show that nth roots of unity form an abelian group under multiplication of Complex numbers.

Sub groups

- 1. Show that the intersection of two subgroups is a subgroup.
- Let G be a group and a ∈ G. If H = { x ∈ G/a x = x a } then show that H is a subgroup of G.
- 3. Show that if H is a subgroup of Group G iff $HH^{-1} = H$.
- 4. If H is any subgroup of a group G then H⁻¹ = H.
- 5. Let H is a subgroup of a group G then prove that $Ha = Hb \Leftrightarrow ab^{-1} \in H$.
- 6. Let H is a subgroup of a group G then prove that $a \in Hb \Leftrightarrow Ha = Hb$.

8 Marks:

- 7. A non-empty subset H of a group G is a subgroup of G iff for all a ,b \in H \Rightarrow **ab**⁻¹ \in H.
- 8. Let H and K are two subgroups of a group G then prove that HK is a subgroup If and only if HK=KH.
- 9. Let H_1 and H_2 are subgroups of a group G then prove that $H_1 \cup H_2$ is a subgroup iff $H_1 \subseteq H_2$ or $H_2 \subseteq H_1$
- 10. Prove that any two right or left cosets are either identical or disjoint.
- 11. State and prove Lagrange's theorem for finite groups.

NORMAL SUBGROUPS

4 Marks:

- 1. Prove that a subgroup H of a group is normal \Leftrightarrow xHx⁻¹ =H for all x \in G.
- 2. Show that every subgroup of index 2 is normal subgroup.
- Show that Intersection of two normal subgroups is normal subgroup.
- 4. Prove that Every subgroup of an abelian group is normal.

8 Marks:

- Prove that a subgroup H of a group G is normal if and only if each left coset of H in G is a right coset of H in G.
- Prove that a subgroup H of a group G is normal iff product of two right coset of H in G is again a right coset of H in G.
- 7. If M and N are two normal subgroups of a group such that $M \cap N = \{e\}$ then each element in M commute with each element in N.
- 8. If H is a normal subgroup of a group G then prove that $G/H = \{ H x / x \in G \}$ is a group w r t coset multiplication

Homomorphism s and permutations

- 1 If f: G→G is a homomorphism then prove that kernel of f is a normal subgroup of the group G.
- 2. If f: $G \rightarrow G$ is a homomorphism defined by $f(x) = x^2$ for all $x \in G$ then show that G is abelian.
- 3. If f: $G \rightarrow G$ is a homomorphism defined by $f(x) = x^{-1}$ for all $x \in G$ then show that G is abelian.
- 4. If $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 6 & 5 & 4 & 3 & 1 & 2 \end{pmatrix}$ write into product of disjoint cycles.

5. If $f = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 3 & 2 & 4 & 5 & 6 & 7 & 1 \end{pmatrix}$ is odd permutation.

6. If $G = \{1, \omega, \omega^2\}$ is a group then find all the regular permutations of G.

8 Marks:

- 7 State and prove Fundamental theorem of homeomorphisms'.
- 8 If f: $G \rightarrow G$ is a homomorphism then prove that f is isomorphism iff ker $f = \{e\}$.
- 9. Let G be a Group and f: G→G such that f(a) = a⁻¹ for a ∈ G prove that f is isomorphism if and only if G is commutative.
- 10. State and prove cayley's theorem for permutation groups.
- 11. If $f = (1 \ 2 \ 3 \ 4 \ 5 \ 8 \ 7 \ 6)$ $g = (4 \ 1 \ 5 \ 6 \ 7 \ 3 \ 2 \ 8)$ then show that $(f g)^{-1} = g^{-1} f^{-1}$.
- 12. State cayley's theorem for permutation groups. If $G = \{1,-1, i, -i\}$ is a group then find all the regular permutations of G.

RINGS

4 Marks:

- 1. Prove that every field is an integral domain.
- 2.Prove that in a Boolean ring R i) a + a = 0 oct-17 ii) if a + b = 0 then a = b iii) R is a commutative ring
- 3. Show that the characteristic of a boolean ring is 2.

8 Marks:

- 4. Prove that every finite integral domain is a field
- 5. Show that the set of Gaussian integers $Z(i) = \{a + ib/a, b \in Z\}$ form an integral domain. Is it a field? justify your answer.
- 6. Show that the set $Q(\sqrt{2}) = \{a + b\sqrt{2}/a, b \in Q\}$ is a field with respect to addition and multiplication.
- 7. Prove that the characteristic of an integral domain is either zero or prime.

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D).

II B.Sc Semester - V

SUBJECT: MATHEMATICS

PAPER V - LINEAR ALGEBRA & MATRICES Question Bank

UNIT-I: VECTOR SPACES - I (10 M)

- 1. Prove that the necessary and sufficient condition for a non-empty sub set W of a vector space V(F) to be subspace of V is that $a,b \in F$, α , $\beta \in W \Rightarrow a\alpha + b\beta \in W$.
- Let W₁ and W₂ be two Subspaces of a vector space V(F) then Prove that W₁ U W₂
 is a subspace of V(F) iff W₁⊆ W₂ or W₂⊆ W₁.
- 3. If S is a non-empty subset of a vector space V(F) then prove that $L(S) = \langle S \rangle$
- 4. If $\alpha_1, \alpha_2, \alpha_3 \dots \alpha_n$ are non zero vecti=or in a vector space in V(F) then prove that either they are linearly independent or one vector α_k where $2 \le k \le n$ is a linear combination of preceding vectors $\alpha_1, \alpha_2, \alpha_3 \dots \alpha_{k-1}$

VECTOR SPACES -I (4 M)

- If W₁ and W₂ are two sub spaces of vector space V(F) then Prove that W₁∩ W₂ is also Subspace of V(F).
- 6. If S and T are two subsets of the vector space V(F) then show that $L(S \cup T) = L(S) + L(T)$.
- 7. Express the vector $\alpha = (1,-2,5)$ as a linear combination of the vectors $\alpha_1 = (1,1,1)$ $\alpha_2 = (1,2,3)$ $\alpha_3 = (2,-1,1)$ in $V_3(F)$.
- 8. Show that the vectors (1,3,2) (1,-7,-8)(2,1,-1) of $V_3(R)$ are linearly dependent.
- 9. Show that the vectors (1,2,1) (3,1,5)(3,-4,7) of $V_3(R)$ are linearly dependent.
- 10. Show that the vectors (1,2,0) (0,3,1)(-1,0,1) of $V_3(R)$ are linearly independent.

11. Show that the vectors (1,0,1) (1,1,0)(1,-1,1) of $V_3(R)$ are linearly independent.

UNIT-II:VECTOR SPACES -II (10 M)

- 1. Prove that every finite dimensional vector space has a basis.
- 2. If V(F) is finite dimensional Vector space then prove that any two basis of V have the same number of elements.
- 3. Prove that every linearly independent sub set of a finite dimensional vector space V(F) is either basis of V or can be extended to form a basis of V.
- 4. Show that the vectors $\{(2,1,0),(2,1,1),(2,2,1)\}$ form a basis of $V_3(R)$ and express the vector (1,2,1) as a linear combination of these basis vectors
- 5. If W_1 and W_2 are two sub spaces of a finite dimensional vector space V(F) then prove that $\dim(W_1 + W_2) = \dim W_1 + \dim W_2 \dim(W_1 \cap W_2)$.
- If W is subspace of a finite dimensional vector space V(F) then Prove that dim(V/W) = dim V – dim W.

VECTOR SPACES -II (4 M)

- 7. Show that the vectors (1,0,0),(0,1,0)(0,0,1) is a basis of the vector space $v_3(F)$
- 8. Show that the vectors (1,2,1),(2,1,0)(1,-1,2) form a basis for \mathbb{R}^3 .
- 9. Show that the vectors (1,1,2),(1,2,5)(5,3,4) not a basis for \mathbb{R}^3 .
- 10. If $\{\alpha, \beta, \gamma\}$ is a basis for $V_3(R)$ then show that $\{\alpha + \beta, \beta + \gamma, \gamma + \alpha\}$ is also a *Basis* of $V_3(R)$.

UNIT-III:LINEAR TRANSFORMATIONS (10 M)

- 1. State and prove Rank Nullity theorem.
- 2. Show that the mapping T: $R^3 \rightarrow R^3$ defined by T(x, y, z) = (x+2y-z, y+z, x+y-2z) is a linear transformation. Find its rank, nullity and verify rank T + nullity T = $\dim R^3$.

3. Verify Rank – Nullity theorem for a linear Transformation T: R $^3 \rightarrow$ R 3 defined by T(x, y, z)=(x-y, 2y+z, x+y+z) and also Show that T ia s Linear Transformation.

LINEAR TRANSFORMATIONS (4 M)

- 4. T is a linear transformation from a vector space U(F) into a vector space V(F) then Prove that range of T is R(T) is a subspace of V(F).
- 5. T is a linear transformation from a vector space U(F) into a vector space V(F) thenProve that the null space of T is N(T) is a subspace of U(F).
- 6. Show that the mapping T: $V_2(R) \rightarrow V_3(R)$ is defined by T(a, b)= (a + b, a- b, b) ia a linear transformation from $V_2(R)$ in to $V_3(R)$.

UNIT-IV:MATRICES (10 M)

- 1. Solve the system $\lambda x + y + z = 0$, $x + \lambda y + z = 0$, $x + y + \lambda z = 0$ if the system of equations has non zero solution.
- 2. Solve 4x + 2y + z + 3u = 0, 6x + 3y + 4z + 7u = 0, 2x + y + u = 0 the system of equations Completely.
- 3. Show that the system of equations x + y + z = 6, x + 2y + 3z = 14, x + 4y + 7z = 30 are Consistent and hence solve them.
- 4. For what values of λ , the equations x + y + z = 1, $x + 2y + 4z = \lambda$, $x + 4y + 10z = \lambda^2$ have solution? Solve them completely in each case.
- 5. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$
- 6. Find the eigen values and eigen vectors of the matrix $A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$
- 7. State and prove Cayley Hamilton theorem.
- 8. Find the characteristic equation of the matrix $A = \begin{bmatrix} \mathbf{2} & -\mathbf{1} & \mathbf{1} \\ -\mathbf{1} & \mathbf{2} & -\mathbf{1} \\ \mathbf{1} & -\mathbf{1} & \mathbf{2} \end{bmatrix}$ verify that it is satisfied by A and hence find A^{-1}

9. Verify Cayley-Hamilton thorem for the matrix $A = \begin{bmatrix} \mathbf{1} & -\mathbf{1} & \mathbf{0} \\ \mathbf{0} & \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{1} & \mathbf{2} \end{bmatrix}$ hence find A^{-1}

MATRICES (4 M)

- 10. Solve Completely the system of equations x + 3y 2z = 0, 2x y + 4z = 0, x 11y + 14z = 0
- 11. Show that the system of Equations x + y + z = -3, 3x + y 2z = -2, 2x + 4y + 7z = 7 are inconsistent.
- 12. Show that the system of Equations 2x y + 3z = 8, -x + 2y + z = 4, 3x + y 4z = 0 are Consistent.
- 13. Find Eigen Values of Matrix $A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 2 \end{bmatrix}$
- 14. Find Eigen Values of Matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & -2 & 0 \end{bmatrix}$
- 15. Verify Characteristic equation of a Matrix $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 2 & 0 & 3 \end{bmatrix}$
- 16. If $A = \begin{bmatrix} 3 & 1 \\ -1 & 2 \end{bmatrix}$ find Inverse of A by Using Cayley Hamilton theorem

UNIT-V:INNER PRODUCT SPACES (10 M)

- 1. State and prove Schwarz's Inequality.
- 2. If α , β are two vectors in an inner product space V(F) then prove that $|(\alpha, \beta)| = \text{II } \alpha \text{ II II } \beta \text{ II if and only if } \alpha$, β are linearly dependent.
- 3. If α , β are two vectors in a unitary space V(C) then Prove that $4(\alpha, \beta) = II \alpha + \beta II^2 II \alpha \beta II^2 + i II \alpha + i\beta II^2 i II \alpha i\beta II^2$

- 4. State and prove Bessel's inequality. Type equation here.
- 5. Apply the Gram-Schmidt's process to the vectors $\{(2,1,3),(1,2,3),(1,1,1)\}$ to obtain an orthonormal basis for $V_3(R)$ with the standard inner product.
- 6. Apply the Gram-Schmidt's process to the vectors $\{(1,0,1),(1,0,-1),(0,3,4)\}$ to obtain an orthonormal basis for $V_3(R)$ with the standard inner product.

INNER PRODUCT SPACES(4 M)

- 7. State and prove Triangle inequality.
- 8. State and prove Parallelogram Law.
- 9. If α , β are two vectors in an inner product space V(F) and α , $\beta \in F$, α , $\beta \in V(F)$ then show that $\text{Re}(\alpha, \beta) = \frac{1}{4} \text{II } \alpha + \beta \text{II}^2 \frac{1}{4} \text{II } \alpha \beta \text{II}^2$
- 10. If α , β are two vectors in an inner product space V(F) such that II α II = II β II then Prove that $\alpha + \beta$, $\alpha \beta$ are orthogonal.
- 11. Prove that every orthogonal set of non zero vectors in an inner product space V(F) is linearly independent.
- 12. Prove that every orthonormal set of non zero vectors in an inner product space V(F) is linearly independent

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D).

III B.Sc Semester - V SUBJECT:MATHEMATICS PAPER 6A – NUMERICAL METHODS Question Bank

UNIT – I: FINITE DIFFERENCES AND INTERPOLATION WITH EQUAL INTERVALS:

10 Marks:

- 1. State and prove Fundamental theorem of finite differences .
- 2. Estimate the missing terms in the following data

x	0	1	2	3	4	5
f(x	0	(-)	8	15	-	35

- 3. State and prove Newton's forward interplation formula.
- 4. Using Newton's forward interplation formula find the value of $sin 52^{\circ}$.

x^0	45	50	55	60
sinx ⁰	0.7071	0.7660	0.8192	0.8660

- 5. State and prove Newton's backward interplation formula.
- 6. Using Newton's backward interplation formula find the value of $tan 17^{0}$.

X	4	8	12	16	20	24
f(x)	0.0699	0.1405	0.2126	0.2867	0.3640	0.4452

- 1. State and prove Advancing difference formula .
- 2. Show that $e^x = \frac{\Delta^2}{E} e^x \frac{Ee^x}{\Delta^2 e^x}$ where h=1.
- 3. Show that $\sqrt{1 + \delta^2 \mu^2} = 1 + \frac{1}{2} \delta^2$.

4. Estimate the missing terms in the following data:

Х	1	2	3	4	5	6	7
f(x)	2	4	8	-	32	64	128

- 5. Find the factorial polynomial of $11 x^4 + 5x^3 + 2x^2 + x 15$.
- 6. Find the factorial polynomial of x^4 $12x^3$ + $24x^2$ 30x + 9.

UNIT II: INTERPOLATION WITH EQUAL AND UNEQUAL INTERVALS:

10 Marks:

- 1. State and prove Gauss's forward central difference formula.
- 2. State and prove Gauss's backward central difference formula.
- 3. Find the value of log 37 using Gauss's forward interpolation formula

X	25	30	35	40	45
f(x)	1.3979	1.4771	1.5440	1.6020	1.6532

- 4. State and prove Newton's divided difference formula.
- 5. State and prove Lagranges divided difference formula.
- 6. By means of Newton's divided difference formula find the value of f(8) and f(15) from the following table

X	4	5	7	10	11	13
f(x)	48	100	294	900	1210	2028

4 Marks:

1. Find by Gauss's backward formula the sale of a concern for the year 1946

Years(x)	1931	1941	1951	1961	1971
Sales in (x)	15	20	27	39	52

- 2.State and prove Stirling's formula.
- 3.State and prove Bessel's formula.

4.If
$$f(x) = \frac{1}{x}$$
 then find f (a,b) and f (a,b,c).

5.By Lagrange's interpolation formula find the value of f(5) given that

x	1	2	4	8	10
f(x)	8	15	19	32	40

6. By Lagrange's interpolation formula find the value of y at x=5, given that

X	1	3	4	8	10
у	8	15	19	32	40

UNIT III: NUMERICAL DIFFERENTIATION:

10 Marks:

1. Using the following table compute $\frac{dy}{dx}$ and $\frac{d^{2y}}{dx^2}$ at x = 1.

х	1	2	3	4	5	6
y	1	8	27	64	125	216

2. Using the given table find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 2.2.

х	1.0	1.2	1.4	1.6	1.8	2.0	2.2
у	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

3. Using newton's divided difference formula find the value of f'(4) and f'(5).

х	1	2	4	8	10
f(x)	0	1	5	21	27

4. Using the given table find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 1.6.

x	1.0	1.2	1.4	1.6	1.8	2.0	2.2
f(x)	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250

4 Marks:

1. Using the following table compute $\frac{dy}{dx}$ at x = 1.

х	1	2	3	4	5	6
у	1	8	27	64	125	216

2. Using the following table compute $\frac{dy}{dx}$ at x = 6.

x	1	2	3	4	5	6
у	1	8	27	64	125	216

3. From the following table, find the value of x for which y is minimum and find this value of y.

х	0.60	0.65	0.70	0.75
f(x)	0.6221	0.6155	0.6138	0.6170

4. From the following table find x correct to two decimal places, for which y is maximum and find this value of y.

x	1.2	1.3	1.4	1.5	1.6
у	0.9320	0.9636	0.9855	0.9975	0.9996

UNIT IV: NUMERICAL INTEGRATION:

10Marks:

1. Evaluate $\int_4^{5.2} log_e x dx$ by using Trapezodial rule .

2. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by using Simpson's 3/8 rule.

3. Evaluate $\int_0^1 \frac{1}{1+x^2} dx$ by using Simpson's 1/3 rule.

4. Calculate an approximate value of $\int_0^{\pi/2} \sin x \, dx$ using 11 ordinate by using Trapezodial rule .

5. Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using Simpson's 3/8 rule.

6. Evaluate $\int_0^6 \frac{1}{1+x^2} dx$ by using Weddle's rule.

4 Marks:

- 1.Evaluate $\int_{-3}^{3} x^4 dx$ by Trapezodial rule with h = 1.
- 2. Evaluate $\int_0^1 \frac{1}{1+x} dx$ by using Simpson's 3/8 rule.
- 3. Evaluate $\int_0^7 \frac{1}{x} dx$ by using Simpson's 1/3 rule.
- 4. Evaluate the integral $\int_4^{5.2} logx \, dx$ by using Weddle's rule.
- 5. Evaluate $\int_0^{\pi/2} \sin x \, dx$ by using Euler-Mclaurin's formula.
- 6. Using Euler-Mclaurin's formula with n = 4 to estimate $\int_0^1 \frac{1}{1+x^2} dx$.

UNIT V : NUMERICAL SOLUTION OF ORDINAY DIFFERENTIAL EQUATIONS:

10 Marks:

- 1. Using the Tylor's series method for y(x), find y(0.1) correct to four decimal places if y(x) satisfies $y' = x y^2$, $y_0 = 1$, where $x_0 = 0$.
- 2. Solve $y' = y x^2$, y(0) = 1 by Picard's method up to the fourth approximation. Hence find the value of y(0.1), y(0.2).
- 3. Given $y' = \frac{y-x}{y+x}$ with $y_0 = 1$, find y for x = 0.1 in 4 steps by Euler's method.
- 4. Solve the equation y' = x + y with $y_0 = 1$ by Runge-Kutta rule from x = 0 to x = 0.4 with h = 0.1.

- 1. Using Tylor's series method ,solve the equation $\frac{dy}{dx} = x^2 + y^2$ for x = 0.4 given that y = 0 when x = 0.
- 2. Use Picard's method to find y(0.1) and y(0.2), given that $\frac{dy}{dx} = x + y^2, y(0) = 0.$
- 3. Determine the value of y when x = 0.1 given that y(0) = 1 and $y' = x^2 + y$.
- 4. Apply Runge-Kutta rule find the solution of the differential equation $y' = 3x + \frac{1}{2}y$ with $y_0 = 1$ at x = 0.1.

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D). II B.Sc Semester - IV SUBJECT: MATHEMATICS PAPER IV - REAL ANALYSIS

Question Bank

UNIT - I REAL SEQUENCE: 4 MARKS:

Prove that every convergent sequence is bounded.

2. Prove that limit of a convergence sequence is unique.

3.. If
$$s_n = \frac{1}{n+1} + \frac{1}{n+2} + \cdots + \frac{1}{n+n}$$
 then show that $\langle s_n \rangle$ is converges.

4. Show that
$$\lim_{n \to \infty} \left[\frac{(n+1)(n+2).....(n+n)}{n^n} \right] = \frac{4}{e}$$

10 MARKS:

State and prove Sandwich theorem.

State and prove Monotone convergence theorem.

3. If $s_n = \frac{1}{1.2} + \frac{1}{2.3} + \cdots + \frac{1}{n(n+1)}$ then show that $\langle s_n \rangle$ is converges.

4. If $s_n = 1 + \frac{1}{1!} + \frac{1}{2!} + \dots + \frac{1}{n!}$ than show that $\langle s_n \rangle$ is a convergent sequence.

5. Prove that every convergent sequence is Cauchy's sequence.

6. Prove that Cauchy's sequence is convergent sequence.

7.state and prove Cauchy's general principle of sequence.

UNIT II: INFINITE SERIES 4.MARKS:

Test the convergence of the following series.

$$1.\sum \frac{\sqrt{n}}{n^2+1}$$

$$2.\sum \frac{(n+1)(n+2)}{n^3 \sqrt{n}}$$

$$3 \quad \sum \frac{1}{n^3} \left(\frac{n+1}{n+2} \right)^n$$

$$2.\sum \frac{(n+1)(n+2)}{n^3 \sqrt{n}} \qquad 3 \quad \sum \frac{1}{n^3} \left(\frac{n+1}{n+2}\right)^n \qquad 4. \quad \sum \sqrt{n^2+1} - n$$

5.
$$\sum \frac{(2n-1)}{n(n+1)(n+2)}$$

6.
$$\sum \frac{n^4}{n!}$$

$$7.\sum \frac{n!}{n^n}$$

5.
$$\sum \frac{(2n-1)}{n(n+1)(n+2)}$$
 6. $\sum \frac{n^4}{n!}$ 7. $\sum \frac{n!}{n^n}$ 8. $\sum \frac{1.2.3....n}{3.5.7...(2n-1)}$ 9.

$$\sum \frac{2^n}{n^n} n!$$

10MARKS

- 1. State and prove limit comparison test.
- 2. Test the convergence of $\sum \sqrt{n^4 + 1} \sqrt{n^4 1}$.
- 3. State and prove Cauchy's nth root test.
- 4. State and prove D'Alembert's ratio test.
- 5. Test the convergence of $\sum \sqrt{\frac{n}{n+1}} x^n$.
- **6.** State and prove Leibnitz's test.

UNIT-III: LIMITS AND COTINUITY 4 MARKS:

- 1. Test the continuity of the function f(x) = |x| for all x in R at the point x = 0.
- 2. If $f(x) = x \sin \frac{1}{x}$ for $x \ne 0$ and f(0) = 0 then find the continuity at x = 0.
- 3. Prove that every continuous function on [a, b] is uniformly continuous on [a,b].

10 MARKS

- 1. Prove that every continuous function is bounded on [a,b].
- 2. Prove that every continuous function on [a, b] is attains its bounds.
- 3 State and prove Intermediate value theorem.
- 4.If $f(x) = \frac{\sin(a+1)x + \sin x}{x}$ for x < 0, f(0) = c and $f(x) = \frac{(x+bx)^{\frac{1}{2}} x^{1/2}}{bx^{3/2}}$ for x > 0

UNIT IV: DIFFERENTIATION 4 MARKS:

then find the values of a, b and c.

- 1. Show that f(x) = |x| + |x-1| is not derivable at x=0,1.
- 2. Show that $f(x) = x \sin \frac{1}{x}$ for $x \ne 0$ and f(0)=0 is not derivable at x=0.
- 3. Verify Rolle's theorem $f(x) = x^3 4x \ \forall \ x \in [-2,2]$.
- 4. Verify Rolle's theorem $f(x)=(x-a)^m(x-b)^n$ for all $x \in [a,b]$.
- 5. Verify Rolle's theorem $f(x) = \log \left[\frac{x^2 + ab}{x(a+b)} \right]$ for all $x \in [a, b]$.

- 6. Verify Cauchy's mean value theorem $f(x) = x^2$, $g(x) = x^3$ for all $x \in [1, 2]$.
- 7 Verify Cauchy's mean value theorem $f(x) = \sqrt{x}$, $g(X) = \frac{1}{\sqrt{x}}$ for all $x \in [a, b]$.
- 8. Verify Cauchy's mean value theorem $f(x) = \frac{1}{x^2}$, $g(x) = \frac{1}{x}$ for all $x \in [a, b]$.

10 MARKS

- State and prove Rolle's theorem.
- 2. State and prove Lagrange's mean value theorem .
- 3. State and prove Cauchy's mean value theorem.
- 4. Using Lagrange's theorem show that $\frac{b-a}{1+b^2} < \tan^{-1} b \tan^{-1} a < \frac{b-a}{1+a^2}$ and hence deduce that $\frac{\pi}{4} + \frac{3}{25} < \tan^{-1} \frac{4}{3} < \frac{\pi}{4} + \frac{1}{6}$.
- 5. Using Lagrange's theorem show that $\frac{\pi}{6} + \frac{\sqrt{3}}{15} < \sin^{-1} 0.6 < \frac{\pi}{6} + \frac{1}{8}$.
- 6. Verify Cauchy's mean value theorem $f(x) = e^x$, $g(x) = e^{-x}$ for all $x \in [a, b]$.

UNIT V: RIEMANN INTEGRATION 4 MARKS:

- 1. If f(x) = k for all $x \in [a, b]$ where k is a real constant then show that f is integrable on [a, b].
- 2. If f(x) = 1 when x is rational,
 - = -1 when x is irrational is not integrable on [a, b].
- 3. If $f(x) = x^2$ for all $x \in [0, a]$ then show that $\int_0^a x^2 dx = \frac{a^3}{3}$.
- 4.If $f \in R[a, b]$ and m, M are the infimum and supremum of f on [a, b] then show that

$$m(b-a) \le \int_a^b f(x) dx \le M(b-a)$$

- 5. If $f \in R[a, b]$ then prove that $|f| \in R[a, b]$.
- 6. If $f \in R[a, b]$ then prove that $f^2 \in R[a, b]$.

10 MARKS.

- 1. State and prove Necessary and sufficient condition for Riemann integrable.
- 2. Prove that Every Continuous function on [a, b] is Riemann Integrable.
- 3. Prove that Every Monotonic function on [a, b] is Riemann-Integrable.
- 4. State and prove Fundamental theorem of Integral calculus.
- 5. State and prove First Mean value theorem of Riemann integral.

6. Show that
$$\frac{1}{\pi} \le \int_0^1 \frac{\sin \pi x}{1+x^2} dx \le \frac{2}{\pi}.$$

7. Show that
$$\frac{\pi^3}{24} \le \int_0^{\pi} \frac{x^2}{5+3\cos x} dx \le \frac{\pi^3}{6}$$

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D).

III B.Sc, Semester - V SUBJECT:MATHEMATICS PAPER 7A –SPECIAL FUNCTIONS Question Bank

UNIT -I: BETA AND GAMMA FUNCTIONS, CHEBYSHEV POLYNOMIALS

10MARKS

1. If n is +ve integer, prove that
$$\Gamma\left(-n+\frac{1}{2}\right) = \frac{(-1)^n 2^n \sqrt{n}}{1.3.5....(2n-1)}$$
.

2. Prove that
$$\beta(l, m) = \frac{\Gamma(l) \Gamma(m)}{\Gamma(l+m)}$$
.

3. Prove that
$$\Gamma(m)\Gamma\left(m+\frac{1}{2}\right)=\frac{\sqrt{\pi}}{2^{2m-1}}\Gamma(2m)$$
.

4. Show that
$$\int_{-1}^{1} (1+x)^{p-1} (1-x)^{q-1} dx = 2^{p+q-1} \frac{\Gamma(p) \Gamma(q)}{\Gamma(p+q)}.$$

5. Prove that
$$\int_{-1}^{1} \frac{x^2}{(1-x^4)^{\frac{1}{2}}} dx \times \int_{0}^{1} \frac{dx}{(1+x^4)^{\frac{1}{2}}} dx = \frac{\pi}{4\sqrt{2}}.$$

6. Show that
$$2^n$$
 $\Gamma\left(n+\frac{1}{2}\right)=1.3.5...(2n-1)\sqrt{\pi}$ where n is positive integer.

4 MARKS:

1. Show that
$$\Gamma\left(\frac{3}{2}-x\right)\Gamma\left(\frac{3}{2}+x\right)=\left(\frac{1}{4}-x^2\right)$$
.

2. Evaluate
$$\int_0^\infty \frac{x^4}{(1+x)^{15}} dx$$
.

3. Evaluate
$$\int_0^\infty \frac{x^8}{(1-x^6)} dx$$
.

4. Evaluate
$$\int_0^2 x(8-x^3)^{\frac{1}{3}} dx$$
.

5. Show that
$$\Gamma\left(\frac{1}{2} + x\right)\Gamma\left(\frac{1}{2} - x\right) = \frac{\pi}{\cos \pi x}$$
.

- 6. Evaluate (i) $\int_0^1 x^4 (1-x)^2 dx$. (ii) $\int_0^\infty x^4 e^{-x} dx$.
- 7. Evaluate $\Gamma\left(-\frac{1}{2}\right)$, $\Gamma\left(-\frac{3}{2}\right)$, $\left(-\frac{5}{2}\right)$.

UNIT-II: POWER SERIES 10 MARKS

- 1. Find the radius of Convergence and the exact intervel of Convergence of $\sum \frac{(n+1)}{(n+2)(n+2)} x^n$.
- 2. S·T X=0 is an irregular Singular Point and x=-1 is regular singular point of $x^{2}(x+1)^{2}y^{11} + (x^{2}-1)y^{1} + 2y = 0$
- 3. Show that X=0 is a regular Singular Point of $x^2y^1 + xy^1 + (x^2 \frac{1}{4})y = 0$.
- 4. Find the Power Series solution of the equation $(x^2-1)y'' + xy' y = 0$.

4 MARKS

- 1. Find the radius of Convergence of $\sum_{n(n+2)}^{(n+1)} x^n$.
- 2. Find the radius of Convergence of $\Sigma_{(n!)2}^{(2n!)} x^{2n}$.
- 3. Show that x=0 is an ordinary point of y''-x y'+2y=0.
- 4. Show that x=0 is an ordinary point of $(x^2+1) y^{11} + x y^{11} xy = 0$.

UNIT-III: HERMITE POLYNOMIALS 10 Marks:

- 1. Prove that $H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} (e^{-x^2})$. 2. Prove that $e^{2tx-t^2} = \sum_{n=0}^{\infty} \frac{t^n}{n!} H_n(x)$.
- 3. Show that $2xH_n(x) = 2nH_{n-1}(x) + H_{n+1}(x)$.

4. Prove that
$$\int_{-\infty}^{+\infty} e^{-x^2} H_n(x) H_m(x) dx = \begin{cases} 0, & \text{if } m \neq n \\ \sqrt{\pi} \ 2^n \ n! & \text{if } m = n \end{cases}$$

4 Marks:

5. Show that $H'_n(x) = 2nH_{n-1}(x)$ if $n \ge 1$. (Recurrence I)

6. Show that
$$H_n(x) = 2^n \left[e^{(\frac{-d^2}{4dx^2})x^n} \right]$$
.

- 7. Find polynomials $H_0(x)$, $H_1(x)$, $H_2(x)$.
- 8. Show that $H'_n(x) = 2xH_n(x) H_{n+1}(x)$
- 9. Show that $H''_n(x) 2xH'_n(x) + 2nH_n(x) = 0$
- 10. Show that $H''_n(x) = 4n(n-1)H_{n-2}(x)$

UNIT-IV: LEGENDRE POLYNOMIALS

10 Marks:

1. Show that ($(1-2xh+h^2)=\sum_{n=0}^{\infty}h^n\,p_{n(x)}$.

2.Prove that
$$\int_{-1}^{1} [P_{n(X)}] dx = \frac{2}{2n+1} if m = n$$

3.Prove that $(2n+1)xp_n = (n+1)p_{n+1+n}p_{n-1}$

4. Prove that
$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} [x \pm \sqrt{x^2} - 1 \cos \varphi]^n d\varphi$$

5. Prove that
$$P_n(x) = \frac{1}{\pi} \int_0^{\pi} \frac{d\phi}{[x \pm \cos\phi]n+1}$$

6. Prove that
$$P_n(x) = x P'_n - P'_{n-1}$$

7. Prove that
$$(2n+1) xP_n(x) = (n+1) P'_{n+1} + nP'_{n-1}$$

8. Prove that
$$(n+1) P_n(x) = P'_{n+1} - xP'_n$$

9. Prove that
$$(1-x^2) P'_n = n(p_{n-1} - xp_n)$$

10.prove that
$$(1-x^2) P'_n = (n+1)(xp_n p_{n+1})$$

UNIT V: BESSELS EQUATIONS

10 Marks:

1. Prove that
$$x J'_n(x) = n J_n(x) - x J_{n+1}(x)$$
.

2. Prove that
$$2J'_n(x) = J_{n-1}(x) - J_{n+1}(x)$$
.

3. Prove that
$$2 n J_n(x) = x[J_{n-1}(x) + J_{n+1}(x)].$$

4. Prove that
$$e^{\frac{x(Z-1/2)}{2}} = \sum_{n=-\infty}^{\infty} Z^n J_n(x)$$
.

5. Show that i)
$$\sqrt{\frac{\pi X}{2}} J_{\frac{3}{2}}(x) = \frac{1}{X} \sin x - \cos x$$
 ii) $J_{\frac{5}{2}} = \sqrt{\frac{2}{\pi x}} \left[\frac{3 - x^2}{x^2} \sin x - \frac{3}{x} \cos x \right]$

6. Prove that
$$J_{-n}(x) = (-1)^n J_n(x)$$

1) Show that i)
$$J_{\frac{-1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$$
 ii) $J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$

2) Prove that i)
$$J'_0 = -J_1$$

ii)
$$J_2 = J_0'' - x^{-1}J_0'$$

iii) $J_2 - J_0 = 2 J_0''$

3)
$$J_n(-x) = (-1)^n J_n(x)$$

4) prove that
$$\frac{d}{dx}[x J_n(x) J_{n+1}(x)] = x[J_n^2(x) - J_{n+1}^2(x)]$$

5) prove that
$$\frac{d}{dx}[J_n^2(x)] = \frac{x}{2^n}[J_{n-1}^2(x) - J_{n+1}^2(x)]$$

6) prove that
$$J_n''(x) = \frac{1}{4} [J_{n-2}(x) - 2J_n(x) + J_{n+2}(x)]$$

Y.V.N.R Govt. Degree College, Kaikaluru, Eluru (D).

I B.Sc Semester - II SUBJECT:MATHEMATICS PAPER II – SOLID GEOMETRY

Question Bank

UNIT-I:The Plane

10M(2) + 4M(2)

4 marks:

- 1. Find the equation of a plane through the points (2,2,1) (9,3,6) and perpendicular to a plane 2x+6y+6z=9
- Find the equation of a plane through the point (-1,6,2) and perpendicular to the planes x+2y+2z=5,3x+3y+2z-8=0
- 3. Show that the points (-6,3,2), (3,-2,4)(5,7,3), (-13,17,-1) are coplanar.
- 4. If a plane meets the co-ordinate axes in A,B,C such that the centroid of \triangle ABC is the point (p, q, r) then show that the equation of the plane is $\frac{x}{p} + \frac{y}{q} + \frac{z}{r} = 3$.
- 5. If the plane 2x+3y+kz-7=0 is perpendicular to a plane 2x-y+3z=9 find k
- Find the equation of the plane through the point (4,0,1) and pallel the the plane 4x+3y-12z+6=0

- 1. A variable plane is at a constant distance 3p from the origin and meets the axes in A,B,C. show that the Locus of centroid of $\triangle ABC$ is $x^{-2} + y^{-2} + z^{-2} = p^{-2}$
- 2 A variable plane is at a constant distance p from the origin and meets the axes in A,B,C. show that the Locus of centroid of the teteahedron OABC is $x^{-2} + y^{-2} + z^{-2} = 16 p^{-2}$
- 3. Find the equation of the bisectors of the angle between the planes 3x 6y + 2z + 5 = 0, 4x 12y + 3z 3 = 0 and which contains the origin

- 4. Find the equation of the bisectors of the angles between the planes 2x-y+2z+3=0, 3x-2y+6z+8=0 and distinguish them
- 5. Show that $x^2+4y^2+9z^2-12yz-6zx+4xy+5x+10y-15z+6=0$ represents a pair of parallel planes and find the distance between them
- 6. Show that the equation $2x^2-6y^2-12z^2+18yz+2zx+xy=0$ represents pair of planes and find the angle between them.
- 7. Show that the equation $x^2+4y^2+4z^2+4xy+8yz+4zx-9x-18y-18z+18=0$ Represent a pair of parallel palnesn hence find the distance between them.

10M(2) + 4M(2)UNIT-II:The Right Line

4 marks:

- 1. Find the image of the point (1,-1,5) in the plane 3x 2y 4z 14 = 0.
- 2 . Find the symmetrical form of the line 2x+2y-z-6=0=2x+3y-z-6
- 3. Find the image of (1,6,3) in the line $\frac{x}{1} = \frac{y-1}{2} = \frac{z-2}{3}$.

 4. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar find the plane containing them.
- 5. Show that $\frac{x+1}{1} = \frac{y+1}{2} = \frac{z+1}{3}$ and x+2y+3z-8 = 0 = 2x+3y+4z-11 are intersect. Find the point of intersection.
- 6. Find the condition the lines x = az + b, y = cz + d and $x = a_1z + b_1$, $y = c_1z + d_1$ are perpendicular.
- 7. Find the angle between the lines $\frac{x+1}{2} = \frac{y}{3} = \frac{z-3}{6}$ and the plane 3x+y+z=7.

- 1. Find the image of the line $\frac{x-1}{2} = \frac{y}{1} = \frac{z+2}{2}$ in the plane 2x+y-3z-4=0.
- 2. Show that the lines $\frac{x-1}{2} = \frac{y+1}{-3} = \frac{z+10}{8}$, $\frac{x-4}{1} = \frac{y+3}{-4} = \frac{z+1}{7}$ are coplanar, find their point of intersection and the plane containing them.
- 3. Show that the lines $\frac{x-1}{2} = \frac{y-2}{3} = \frac{z-3}{4}$, $\frac{x-2}{3} = \frac{y-3}{4} = \frac{z-4}{5}$ are coplanar, find their point of intersection and the plane containing the lines.

- 4. Find the S.D and equation between the lines $\frac{x}{2} = \frac{y}{-3} = \frac{z}{1}$, $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$.
- 5. Find the S.D and equation between the lines $\frac{x-1}{3} = \frac{y-8}{-1} = \frac{z-3}{1}$, $\frac{x+3}{-3} = \frac{y+7}{2} = \frac{z-6}{4}$... Also find the points in which the S.D line meets the given lines.
- 6. Find the length and equation of S.D line between the lines $\frac{x}{4} = \frac{y+1}{3} = \frac{z-2}{2}$, 5x-2y-3z+6=0=x-3y+2z-3.
- 7. Show that the equation to the plane containing the line $\frac{y}{b} + \frac{z}{c} = 1$, x = 0 and parallel to the line $\frac{x}{a} \frac{z}{c} = 1$, y = 0 is $\frac{x}{a} \frac{y}{b} \frac{z}{c} + 1 = 0$ and if 2d is the S.D prove that $\frac{1}{d^2} = \frac{1}{a^2} + \frac{1}{b^2} + \frac{1}{c^2}$

UNIT-III: The Sphere 10M (2) +4M (2)

- 1. A plane passes through a fixed point (a, b, c) and cuts the axes in A,B,C. Show that the locus of the centre of the sphere OABC is $\frac{a}{x} + \frac{b}{y} + \frac{c}{z} = 2$.
- 2. A sphere of constant radius **k** passes through the origin and meets the axes in A,B,C. Show that the locus centroid of \triangle ABC is the sphere $9(x^2+y^2+z^2)=4k^2$.
- 3. A plane passes through a fixed point (a, b,c).show that the foot of the perpendicular to the plane from the origin lies on the sphere $x^2+y^2+z^2-ax-by-cz=0$.
- 4. Find the centre and radius of the circle $x^2+y^2+z^2-2y-4z=11$, x+2y+2z=15.
- 5. Find the equation of a sphere through the circle $x^2+y^2+z^2+7y-2z+2=0,2x+3y+4z=8$ is a great circle.
- 6. Show that the plane 2x-2y+2z+12=0 touches the sphere $x^2+y^2+z^2-2x-4y+2z-3=0$ and find the point of contact.
- 7. Find the equation of sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and passes through the origin.

- 8. Find the equation of tangent planes to the sphere $x^2+y^2+z^2-4x+2y-6z+5=0$ which are parallel to 2x+2y-z=0.
- 9. show that spheres $x^2+y^2+z^2-2x-4y-6z-50=0, x^2+y^2+z^2-10x+2y+18z+8z=0$ touch externally at $(\frac{45}{13}, \frac{2}{13}, \frac{-57}{13})$

10 marks:

- 1. Find the equation of a sphere through the points (1,-3,4), (1,-5,2), (1,-3,0) and whose centre lies on x + y + z = 0.
- 2. Find the equation of a sphere through the points (1,0,0)(0,1,0)(0,0,1) and having the least radius.
- 3. Show that the plane 2x-2y+z+12=0 touches the sphere $x^2 + y^2 + z^2 2x 4y + 2z 3 = 0$ and find the point of contact.
- 4. Show that the circles $x^2+y^2+z^2-y+2z=0$, x-y+z=0, $x^2+y^2+z^2+x-3y+z-5=0$, 2x-y+4z-1=0 lie on the same sphere. Also find its equation.
- 5. Find the equation of the spheres passes through the circle $x^2+y^2+z^2=4$, z=0 and intersected by the plane x+2y+2z=0 in the circle of radius 3.
- 6. Find the equation of a sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cut orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
- 7. Find the equation of the sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and passes through the origin .

UNIT-IV:The Sphere and cones 10M (2) +4M (1)

- 1. Find the pole of the plane x+2y+3z=7
- 2. Find the plane of contact of the point (3,-1,5) w.r.t the sphere, $x^2+y^2+z^2-2x+4y+6z-11=0$.
- 3. Show that the spheres, $x^2+y^2+z^2+6y+2z+8=0$, $x^2+y^2+z^2+6x+8y+4z+20=0$ are orthogonal.

- 4. Find the equation of the cone with vertex at (-1,1,2) guiding curve $3x^2 y^2 = 1$, z = 0
- 5. Find the equation of the lines of intersection of yhe plane and the cone given below x+3y-2z=0, $x^2+9y^2-4z^2=0$.
- 6 .Find the equation of the cone whose vertex is (1,2,3) and base $y^2=4ax,z=0$. 10 marks:
 - 1. If r_1 , r_2 are radii of two orthogonal spheres then prove that the radius of their intersection $r_1 r_2 / \sqrt{(r_1^2 + r_2^2)}$.
 - 2. Find the radical centre of the spheres $x^2+y^2+z^2+4y=0, \quad x^2+y^2+z^2+2x+2y+2z+2=0,$ $x^2+y^2+z^2+3x-2y+8z+6=0, \quad x^2+y^2+z^2-x+4y-6z-2=0$
 - 3. Find the limiting points of the coaxial system $x^2+y^2+z^2+20x+30y-40z+29+\lambda(12x-3y+4z)=0$.
 - 4. Find the limiting points of the coaxial system of spheres $x^2+y^2+z^2+3x-3y+6=0, x^2+y^2+z^2-6y-6z+6=0.$
 - 5. Find the equation of a sphere which touches the plane 3x+2y-z+2=0 at (1,-2,1) and cut orthogonally the sphere $x^2+y^2+z^2-4x+6y+4=0$.
 - 6. Find the equation of the quadric cone through the co-ordinate axis the three lines $\frac{x}{1} = \frac{y}{-2} = \frac{z}{3}$, $\frac{x}{-1} = \frac{y}{1} = \frac{z}{1}$ & $\frac{x}{5} = \frac{y}{4} = \frac{z}{1}$.
 - 7. Find the angle between the lines of intersection of the plane x-3y+z=0 and the cone $x^2-5y^2+z^2=0$.
 - 8. Prove the angle between the lines of intersection of the plane x+y+z=0

With the cone ayz+bzx+cxy=0 is
$$\frac{\pi}{3}$$
 if $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = 0$

UNIT-V: The cone 10M (2) +4M (1)

4 marks:

- 1. Find the equation of the cone with vertex at (-1,1,2) guiding curve $3x^2 y^2 = 1, z = 0$
- 2.find the enveloping cone of the sphere $x^2+y^2+z^2+2x-2y=2$ with its vertex at(1,1,1)
- 3. Find the equation to the right circular cone whose vertex is (3,2,1), axis $\frac{x-3}{4} = \frac{y-2}{1} = \frac{z-1}{3}$ and semi vertical angle 30°
- 4. Show that the reciprocial cone of $ax^2+by^2+cz^2=0$ is the cone $\frac{x^2}{a} + \frac{y^2}{b} + \frac{z^2}{c} = 0$

- 1. Find the vertices of the cone $2x^2+2y^2+7z^2-10yz-10zx+2x+2y+26z-17=0$
- 2. Find the vertices of the cone $7x^2+2y^2+2z^2-10zx-10xy+26x-2y+2z-17=0$
- 3. Prove that the equation $\sqrt{fx} \pm \sqrt{gy} \pm \sqrt{hz} = 0$ represents a cone that touches the co-ordinate planes and find its reciprocal cone.
- 4. Show that the general equation to a cone which touches the three coordinate planes is $\sqrt{ax} + \sqrt{by} + \sqrt{cz} = 0$
- 5. Show that a right circular cone has sets of three mutually perpendicular generators, its semi verticle angle must be $tan^{-1}(\sqrt{2})$
- 6. Show that the semi verticle angle of a right circular cone having three mutually perpendicular i)generators is $\tan^{-1}(\sqrt{2})$ ii) tangent planes is $\tan^{-1}(\frac{1}{\sqrt{2}})$